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FOREWORD

NOYTHROP NORAIR

The cbjective of this program is to develop general procedures for the

determination of clectromagnetic scattering from arbitrary surfaces with appli-

cativn to eptimization of vehicle, antenna, and radome designs.

This document is priacipally a compilation of the tollowing technic.! reports

and memos issued during the course of this investigation.

L.

3.

1.

“he
xolve ot

Radar Crass Section” = Wright Patterson Ar Force Buse, Ohio,

Technical Data: "Scattering of a Plane Magnetic Wave from u

s A b

Conducting Circular Cylinder" - Fred Oshiro, 1 February 1963.

Technical Data: "'Scattering of a Flane Electric Wave from a

Conducting Circular Cylinder" - Fred Oshiro, 7 February 1963,

Technical Data: "A Source Distribution Technique for the Solution

of General Electromagnetic Scattaring Problem" - Fcbruary 1963.

NB6§3-125: "Proposa! for a Source Distribution Technique for the

Solution of General Electromagnetic Scattering Problem™ - April 1963.

Addendum & Technical Data (Item 3) dated 23 May 1964.

Preliminary Data, "A Scurce Distribution Technique for the Solution of

General Electromagnetic Seattering Problems”, dated 14 May 1964,

Addendum to Item (6) dated 14 December 19G4.

technique desceribed herein is being further developed and extended oé

arary georwetries unde s contract AF 33(615- 3166 .. "Culeutution of

- il -



SUMMARY

A Source Distribution Technique ("SDT") for the solution of general electromagnetic
problems has been developed by the Electronic Systems Research Group of Northrop
Noradr, s techniqui: embodies a comparatively simple and unrestricted computa- R
tionii method applicable to the complex problem of scattering from arbitrarily shaped
geonietries.  The procedure exhibits a greater degree of flexibility and accuracy than
present day ax)pfoximation techniques. It is a numerical procedure for determination
ot the radar c: .8 section for complex targets, based on an integral equation approach.
It can be emploved to cetermine the electromagnetic scattering from arbitrarily shaped
two-and-three-dimensional geometries in the difficult resonant frequency ranges in
which classical solutions are not available. Combhined with the Norair Physical Optic.
procedure the "SDT" can be employed to determine ‘the electromagnetic scattering of a

variety of shapes, including large soattering objects; f.e. >2 A,

Verification of the technique was performed on the Norair radar reflectivity runge.
An image~plane was utilized to measure the current distribution and scattered fields.

A brief outline of the basic procedure is described together with a few examples to

demonstrate its validity.

AT
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SYMBOL DEFINITIONS

arbitrary constant vector
electric fie!d vector

unknown current

induced current vector

C + jD = transverse current
A + JB = longitudinal current

Green's function

magnetic field vector

zero order Hianksl fimotion of the first kind

first order Hanksl fanction of the first kind
unit imaginary unbr(lz- -1)
? = wave munber

incident field
unit normal ve ;tor =% + m§ + n%
unit normal at point ¢ = IPQ\* mp9+ np'ﬁ
number of surface elements

xz + yz + zz = observation point in region V
surfaces of region V

transverae component



NOTATIONS

Subscripts:

P >hservation point on scatterer

Q = source point on scatterer

1 = obstacle surface

2 = outer surface

t = transverse component

z = longitudinal component in z direction
Superscripts:

priined variables = represents source points
unprimed variables = represents observation points
in = incident wave

1] = acattered wave
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1,0 INTRODUCTION
1.1 Problem Area

Rapidly advancing weapon system technologies have created a renewed interest
in the study of scatiering and diffraction problen:s. A current concern is with
evaluation and control of radar cross section (RCS). Much effort has been directed
at reducing RCS by camouflaging techniques a id by use cf radar absorbing material
(RAM); additional efforts are directed at RCS enhancement of drones and decoy
applications for psnetration aids. There is an acute interest in refleciivity signature
for vehicle identification. Northrop Norair's studies in this field have bee. motivatu¢
by a need to op' mize vehicle shapes compatible with both aerodynamic performance
and RCS requirements. Solutions to these scattering problems are of vital interest
to the design engineer.

The computation of scattering from an arbitrary obstacle is intrinsically compli-
cated, since it depends on several parameters as frequency, polarization, direction
of incident wave, observation angle, configuration, and material of the body. The
fundamental problem !n computation is the explicit determination of the far field
parameters of amplitude, phase, and polerisation by solution of the basic wave equation.

Traditionally, solutions to the wave equation have been achieved by the separation
of variables or eigenfunction expansion, asymptotic evaluation of an integral equation,
and the optical approximation techniques. The restrictions imposed by these methods
have limited their usefulness in many practical engineering problems. The require-
ment that the body configuration be completely detined in a coordinate system has led
to special mathematical functions that are tabulated for only a few simple shapes.
Asymptotic expansions lead o infinite series, whose convergence behaviors are detcr-

mined by the "eiectromagr.etic size'’ of the body, therefore, for practical reasons, only

. s . — - gt G



"small" shapes have been examined. In contrast, the "optical' techniques are valid
only for '"arge' shapes.

An immediate dilemma arises when the design engineer is faced with a scatter-
ing problem in which the geometrical shape does not "'fit" the above requirements. The
problem usually is approached by intelligent application of known golutions from
simpler shapes, or by relying heavily on reflectivity range data, A need then exists
fcr a general method for evaluating the scattering and diffraction problems encountered

in the design of practical electromagnetic systems,

1,2 State of the Art

Since the solution of electromagnetic scattering dnd diffraction problems is
difficult, the introduction of the above restrictions was not without foundatica, In
order to gain insight as well as attach physical significance to the theoretical studies,
it was natural that the classical stuuies be concentrated on small, simple, and idealized
bodies. Most of the present day approximation procedures forr complex structures are
usually tested against the exact solutions from simpler shapes. The simple body
solutions provide the only means for calibrating experimental techniques to measure
scattering and diffraction phenomena, Also the knowledge gained by a detailed study
of the simpler shapes is used as stepping stones to the study of more complicated

shapes.

The accomplishments of Siegel and his group at the University of Michigan
together with the Antenna Laboratory Group at Ohio State University, constitute a
major contribution in recent years (References 1 and 2). Their procedure was to

assume that the various parts of a large complex shape (such as an aircraft) scatter
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independently. They approximated the parts by relstively simple shapes, computed
the scattering from each shape, and combined the individual contributions to obtain
the total scattered tield. Thelr results yield good agreement between theory and
experiment. However, for critical aspect angles large errors arise which are
generally attributed to the inability of the method to properly model the resonance
of the fine structure (i.e., ducts and engine nacelle).

In attempting solutions to more general configurations, the emphasis is usually
placed on the desirability of attaining purely analytical solutions. The study of
numerical solutions has been neglected but not overlooked. In 1959 Sinclair (Refer-
ence 3) emphasizes the need for more general methods of solving boundary-value
problemas. He also pointed out that there may be certain advantages of mumerical

solutions in the "resonance region." The usefulness of numerical techniques in the
solution of potential flow problems (Laplece's equation) in aerodynamics amd hydrody-
namics has been demonstrated by 8Smith (Reference 4) and Hess (Reference 5). In
addition to solving general problems involving two-dimensional and axialiy symmetric
bodies, they have provided general techniques for the solution of arbitrary three-
dimensional shapes. There is a very limited supply of numerical procedures for
general electromagnetic scattering problems,

It is the p.rpose of this reportto describe a method based on the numerical
solution of an integral equation which is capable of giving excellent results in this
range. Additionally, by application of the principles of physical optics, the technique
is extended to include "large" objects and has the nique feature of eliminating much
of the guesswork associated with the current customary physical optics procedures.



2.0 THE SOURCE DISTRIBUTION TECHNIQUE ("SDT'")
2.1 Two-Dimensional Formulation

2.1.1

D l1E

in¢ inc

MEz
v

G(r,1)

z, d Itp=tq!
Q
> X
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vir) r
-
&
Py
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In the volume V enclosed by surfaces, 81 and 83 assume there exists two
scalar potential functions ¥ (r) and G (r', r) such that ¥(r) satisfies the homo-

gencous wave equation,

and the Green's function G (r', r) satisfies the wave equation.

@ skd)w(r)=0

w(r)——Our—.n

(V2 + kz) G(', r)=-48(r-1'),

G(r', r)=0as r—e .
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Applying Green's Theorem to Y(r) and G (r', r) we obtain

f IG @, 1) @2 +xd) v @"-van 0 xd G ', r]dv'
'

(3)
= sf .5 !G(r',r)s-%r Y- i'(r')sg-r G(r',r)lds'
1723

where the normal derivative on the surface is taken in the direction of the inward

pormal.

However, in virtue of Equation 1,

v/ lG ', 1) (2 + i) ¥ (r')] dv'=0, (4)

also from the definition of the deita function

.Vf [&(r')(v"+k’)0(r', r)'dv'.

(5)
vf v [-d(r-r)|av v .
Equation 3 becomes,
V()= sf [6 6" Dr v - ¥ (58 G, )] awr
2
®)

+J [o6 D v @- vzt e o
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The total field at r, is composed of an incident and scattered field,

W () = Y1 (1) 4 9 %€ (1), )

It can be shown, (References 6 and 7) that the integral over S2 reduces to
/] h“’(r) and the integral over S1 represents the scattered field.

Equation 6 becomes

Wil gy = pine (1) 4 sj [6 6", D2 v @) - ¥ ()5 G, 1) ds’
1
(8)
and represents the integral equation of the field at r in terms of an incident field
contribution and a surface integral contribution.

2.1.1.1 TMMode (E,'"™) Propagation

For the case of TM mode propagation in the two dimensional domain the electric
field can be expressed as

E@e=v(so)i-z 0 ®)

where z is taken as the separation direction and t represents the transverse
components. (This propagation mode corresponds to horisontal polarization). Sub-
stituting this expression in Equation 8 yields,

£t )=k 17 1)+ s/ [6 &, 152 E 1O )

1 (10)

total ., ' '
-E, (t)s%rG(t,t)lds.



The free space Green's function in the two dimensional domain is the sero
order Hankel function of the first kind,

G (0" 0" p, 0) -'Tl Ho(l) (k\/P2 +012 200" cos (6- 0" 1)

o o, 9=F4 B/t -{) (12

If'S, is perfectly conducting, the total electric field vanishes on the surface,

MM 0=E," 0+ 00 (13;

Therefore when the cbservation point is taken on the surface, Equation 10
reduces to 1 total
0-e,wed [ B a0 e e ay
1

T qutty ;8 1,18

incident electric field. The direction of current flow is in the direction of the electric
ﬂ.eld. ea ‘o [ ] m . m. w.

(') is the unknown current induced on 8, by the

total " 2

F t)=sir E 15)

and introducing subscripts P and Q for the observation and source points respectively
on the surface of the scatterer, we obtain the desired integral equation for the

unknown current F z (tQ),

0-5, ™ tgrg- [ [, |ty 1)) R ag )
1



2.1.1.2 LE Mode (H, ™) Propagation
For the case of TE mode propagation, the magnetic field vector may be

expressced as follows:

H(r)=p (b 0)2=H, ()2 (1)

where, again, z is taken as the separation direction. (This mode of pro-
pagation also corresponds to vertical polarization).

Substituting this expression in Equation 8 yie'ds,

0= 0+ [ e, 08 1 e
A A ] an 2
1 (18)
total )
-H, O ) gar G, ) | ds'
The boundary co.adition on 81 for the TE case is
optotal (19)

ant  ®0=0,
If the cbscrvation point is taken on 81. then Maue (Reference 8) has showa that
the induced current at the point of incidence is the-average value of the magnetic field
at that point, consequently

H ()
R A CEr, Sf B e 2 B Wit -¢) ar o)

1

The quantity Hzmtal(t') is the equivalent unknown current induced on S 1 by the
incicient magnetic field and flows transverse to the z direction.

total (
z

F, (t') = H it (21)
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The integral equation {s,

total
H, " (tp)

A =8, )

k (1) : A .
+-}— Sfl ,H‘ (k|tp - tql) F, (tQ) . cos(n, (tpﬁ tq ))]dsQ 2

,

2.1.2 Scattering Cross-Section
The scattered fields may be evaluated irom the current distribution by applica-
iion of Kirchoff's integral

- Jyoe nFea 23)

Since the observation distance is usually taken to be very large, the asymptotic
forms of the Hankel functions may be introduced for the Green's function to give:,

3 1/2

O (r)=(sh=) o &P 74 8/rt-e"“"' ©08 (8 - 6') cog (), B) ds* (24)

1/2
3
B, ()= - Jok (5%5)

- * Y
o Jkr - /4) [ Fse jkr'cos (6 - 6')y, (25)
8 L d
The radar cross section of two-dimensional cylinders is defineci as the power
scattered per unit axial length to the incident power and has dimensions of length.
Thus,

g IE:C (t')l2 2nr |st° (r)l2

| - 6
el g e (26)

where the expressions Ez'c(r) and Hz'c(r) are the scattered fields from Equations
24 and 25 respectively and the integration is taken over the closed contour of the



scatterer. For simplicity the scattering cross~section has becn normalized to

unity incident power.

2.1.3 Numerical Solytion of the Integral Equation
The use of an integral equation to formulate a scattering problem is well known

and has been the basis of many approximation techniques. (References 8-14). The
present technique differs from classical treatments in that numerical mothads are
exploited to obtain direct solution for the unknown quantities rather than fos,mal indircct
methods. The solution of Equations 16 and 22, for example, may be achieved by
first approximating the contour S1 by n straight line segments and then setting the
current distribution constant over each interval.

21" A+ B @1)

F

u=Ci+1b (28)

i

This assumption is valid only if the line segment is less than . 12).. Inseriing
this expression in Equations 16 and 22 respectively yields

A (t5) +1 B, (t5) l
—Ezmc(tp)= g“ i tQ4 L QI . sf Ho(l)(kltp- Ql)dsQI (29)

Ci(tg) +1 D (tQ)
_.Hinc(tp)= gl, 1'Q x 1'Q

z
(30)

+1% |, ¢ +1D, )] sf H, % |ty - Q) rcos (R itp™ ) "'Ql

]



The integration of the Hankel function is carried out numericaily via Simpeun's
rule. The integral equation is now recast into a set of firiic difference equations,
wherein the complex coefficients of the unknuwn curvents form an n x n matrix, n
being the number of sub-surfaces describing the body. The excitation function is the

impinging wave, The unknown currents are deiermined by solving a matrix equation

] 1= - [ o

[F = unknown currcnts

4
[T = Kernel of the integral equation

where

[la = incident field

-

Applications of matrix inversion techniquee lead to a direct solution of the

currents.

To demonstrate the validity of this technique a classical problem is examined,
i.e., scattering from an infinit« ctrcular cylinder. The problem is specialized for
normal incidence of efther a vertically or horizontally polarized wave, resulting
in either transverse or long tudinal type currents respectively. These simg:ifications
were introduced to provide suitab.: comparisons with available classical results.
Figures 1 and 2 are comparisons of the current amplitude und phase with the classical
sories expansion results. (Itefercnce 16). In both examples the diameter of the
cylinder was choscn to be X /2 ; and twelve points were distributed equidistant around

the periphery t~ carry - it the rumericai integration.

-11 -



The bistatic scattering cross-sections of the circular cylinder for vertical
and horizontal polarization arc shown in Figures 3 and 4 respectively. The trans-
mitter is fixed at the 180 degree position and the radar cross section is observed at
various histatic angles The quantity chavacteristics of energy scattered back toward
the source is commonly known as the monostatic cross section of the obstacle where-
in the transmitter and receiver are both located at the same point. The forward or
total scattering cross-section is the value at U degrees. Where possible theoretical
results have been introduced for suitaile comparison with the "SDT' data. Normali-
vation of the results is accomplished by muitiplying the cross-s>ction by the wave
number, k. {The designation "SDT" in quotation is used to distinguish this technique

from other precc.s “res developed during the course of this study).

The flexibiiity of the "SDT" for the solution of non-circular geometries will be
demonstrated. FEarlier contributio.is to generalize the circular cylindrical scattering
problems to ncn-circular shapes were made by Fock (Reference 16). His "universal
function' enablea him to determine the surfuce currents in the penumbra region near
to and including the shadow boundary. More recently, Wetze! (Reference 17) follow-
ing the lead of Fock derived a new set of func.tions to obtain the currents in the deep
shadow region where Fock's approximation was not adequate. Wetzel applied his
functions for the solution of the current distribution on a perfectly conducting elliptic
cylinder and confirmed his theory with measured data. The "SDT" was applied to
the same geometry for comparison. As siown in Figures 5 and 6 the "SDT" shows
stil! greater correlation with the measured data, especially in the deep shadow region.
Its bistatic scattering cross-se~ction is shown in Figure 7. The sharp peak in the

forward direction is characteristic of large scatterers.

Next, the scattering cross-section of two different airfoil sections shown in

Figures 8 and 9 wer2 considered. An incident magnetic plane wave propagating along

-12 ~
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the x-axis impinges on the surface of the perfectly conducting two dimensional

geometries. Classical results to these geometries have not been possible because
of the complexity of solutions. The airfoil shape was approximated by 49 straight
line segments distributed along the periphery and the "SDT'" was upplied. The bi-

gtatic cross-sections are shown in Figures 10 and 11,

Several impc:tant conclusions concerning the behavior ¢ these scatterers
can be made which otherwise would be difficult if not impossible to predict by
approximation techniques or by intuition.

1. A large back lobe is developed at 150 degrees in the direction of the
trailing edge.

2.  Although airfoil section No. 2 is smaller than No. 1, its major back lobe
is larger.

3. The monostatic cross sections (ot 180°) of the airfoil sections are

approximately equal.

2.2 Three Dimensional Formulation
2.2.1 Derivation of the Integral Equation

Aside for the additional complexity of vector fields, the derivation of the inte-
gral equation is similar to the two dimensional case.

In the volume V enclosed by surfaces 8, and 8, assume there exists two vector
A A ~
fields H(r) and G (', r) such that H (r) satisfies the homogeneous vector wave

equation

A 2 A
gxVxH(r)-K H(r)=0
(32)
ﬁ(r)—’Oas r——cx

-13 -
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ﬁ (r) = Magnetic Field

Gr,r)= @o(r; r)a
jk |r-r'|

°n ) ST z
” -

A
and the vector Green's function G(r', r) satisfies the inhomogeneous wave equation

VxVx&(r',r) - kza(r',r) =-8(r-ra
(33)
(Ai(r', ry=0asr —e

Applying Green's theorem to the wave equation we find
) A 2 /v A 2 A
/ ;G(r',r)-[v'x x+kK" [HE)-H@) |V x 9'x+ Kk G(r',r)z dv'
\'4
(34)

=f[l’-\! (r')x 9 x e‘v(r',r) -é(r',r)xV'xﬁ(r')]- n'ds'

Sl+ 82

where the normal Q' is directed inward toward the volume V,
- 14 -
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The left hand side of Equation 34 reduces to

-éﬁ(r')-[-a(r-r')ﬁ] dv'-ﬁ(r)-?t, (35)

The vector A is assumed constant and arbitvarily oriented within volume V.

Equation 34 becomes,

ﬁ(r)° a= ézz[ﬁx V'xﬁ(r’)]- elr',r)+ﬁxl’-\l(r')-[v'xe(r'.r)] ‘ do

A A
-[i[ﬁ x v'xH (r") ] &(r‘,r,wﬁxli (r') - [V'xG(r',r)] % ds' (36)
5, .
Substituting H (r) =B 0oy - Q% (1) tnto the first integral of Equation 36 we

find
[ =-f ; n x [V'xﬁtm (r')]* a(r',r)
8, 8

+[ﬁxﬁ“‘° (r')]-[v'xa(r', r)]z ds' (37)

. [2;3 x [v' x H® (r')] ¢ G(r')r) + [ax {9 (r')] : [v' x G (r’,r)] %a g
Applying Green's theorem in reverse to the first integral
] sfz ;ﬁx [v' x fithe (r')]- G (r',1) + [ax fine (r')] : [v' x G (r',r)] $a s
- 6 [& (', 1) + (9" x 9" x + kD) B (r1)
(38)

- ﬁinc (r). (¢"x9¢' x4+ k2) 8 (r', r)] dv
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-- S '[° "3] v - gine 2 (38)
‘{H (r)]|-8(r-1r'") dv H (r).a Continued

A A
The second integral vanishes identically since Hsc(r') and G (r', r) both satisfy
the radiation condition. Therefore, Equation 36 reduces to

H(r)- 4 = ™ (). 2

(39)
{[ A A A A A
- f nx¢xH(@E) |- G(r,r)+nxH(r"): - |9'xG (', r)]|(ds'
[ffrrsien] rrsbic]fox
And from Maxwell's equation,
Vxﬁ(r')=j ucﬁ (r'l (40)
we find
}A{ (r) - a= ﬁlnc (r) - a -sf 230([38& (r')] . a(r',r)
1
(41)

+ [ﬁxfl(r')] -[V'xa(r',r)]sds:

If obstacle S1 is assumed perfectly conducting tacn tiic tangential component
A A
of the electric field vanishes, n x E /r') = 0 and additionally the current induced on

A A A
Sl is givenby nx H (r") = F (r").

Equation 41 may be rewritten as

-16 -



s —— e A

H(rp) ginc (rp) fF(rQ) [V xG(r , rp)]d; (42)
But,
vae(rq, rp)= vav(rq, rp)3.=¢(va3.)
+ vQ¢(rQ’ !‘p)xa= VQ¢(1'Q, rp)xa since & is a constant vector.

!lence,

H(rp) inc(rp) ﬁ-f;quo(rQ, rp)xf‘(rq)zdsQ (43)
8l .
If the observation point is taken on the surface we obtain the desired integ.-al
equation
?‘ (rp)

_ 3 = ¢ ﬁmc(rﬁxap-l[vq ¢(rQ, rp)xﬁ‘(rq)xﬁp] d SQ (44)
l L ]

Where subscripts P and Q designmate points on the surface of the scatterer

+ikir,-r.l
e P 'q
o(ra, r
Q’ P) lnlrp Ql
9(’1'?) = current at point P
VQ «p(rQ ’ rp) s gradient of ¢ with respect to pointQ

wiP- Ul ~ A
= 2 B | 1egkprpergl | olig rp) G5 W = x v,
(rp- rQ)
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A
Hmc(rp) = incident plane wave at point P
ﬁp = unit normal at point P

A A A
= lpx +mpy+ng2z

Irp - rQ| = \/(xP - xQ? + (yp - yq)f-'- (zp - zQ)T‘

31 = total surface of the scatterer
d’Q = element surface at point Q ,
2.2.2 Scattering Cross-Section

The scattered field may be obtained by substituting the current distribution in
Kirchoff's integral,

!Al'c(r)= -4[9'6(:--, r)xl?(r')]ds'

(45)
A
/. ik lr-e| A '
.- | [“ o G jk)x!-‘(r)]ds
and for r > > p/
. o
ﬁ“(r)z‘--l‘i “}“‘ |» “';ﬁ-(r')]d-' 48
4mr .
The scattering cross-section has the dimension of lengthz. Thus
/s 2
O.c = 4 2 H r (47)
inc
B, ()]
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A
where H%(r) is Ziven by Equation 46 and the integration is carried out over the entire

surface of the scatterer.

2.2.3 Numerical Solution o; al Equation
The integral Equation 44 represents the complete formulation of the boundary-
value problem with the following boundary conditions:

E@mxh=0, ﬁ(r)xﬁp=-i‘\‘(r).

To completely evaluate the unknown currents, the integral equation must be solved
for the individual components of ﬁ (r). For the spherical geometry, the surface may
be parameterized in terms of local coordinates 8 and @. In this special case therc are

two components of the unknown current and the governing set of equations are:

S x n jkr
Fj = 2 sin  oJERCOS O, ;7{ ad/ a3 e’ 5— (1 +jkr)
- r
:[atnGotnF-rcooﬁcoo‘coo(?f—?)-cos(@-?)] Fg (48)
+ [ltn(a-i) (cos 6 - cos 5)];1"6
Fs = 2 cosd cos @ elk2 cos & )
3 n n jkr
-2 ] o & 141k F F
Tn‘ﬁf“-,,“’ S (14 r),[] a+[] ‘E..

-19 -



The coupled set of matrix equations are
l“;mc|=i‘“”l’5|+ lB][F ;] (50

12« (o]l [ I =

By direct extension of the two-dimensional case, the surface was approximated
by n elemental areas each having constant surface current density to develop a set of
finite difference equations. However, since ?‘ (r) is composed of two orthogonal
components on each surface, the matrix equation will be of order 2n. The technique
was applied to the problem of electromagnetic scattering from a sphere due to an
incident magnetic fieid. The diameter of the sphere was chosen to be .541 A (ka = 1.7)
and 72 elemental areas described the complete surface. Because of basic symmetries
in the problem the size of the matrix was reduced from 144 x 144 to 36 x 36. A more
complete description of symmetry conditions will be given in subsequent para—aphs.

Figures 12 and 13 are compariscns of the P;(m and r;(é) data (taken about the
principal plane) with the classical solutions of Ki“g and Wu (Reference 15).

The escattered fields are obtained from che following equations:

jkr _
By = i fasg 45 (4 {[cos 7 an 5- 91 7
(62)
+ cos (@ - ¢)F$§

H =1 [as -2 ¥ in 8 sin@ +cosé cos 5cos(¢-¢)lF
o= wnfeqar (5) {[=tn ;

. sin (@ - @) cos 6 Fal (63)
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The scattering cross-sections are obtained from:
2 []8[2as
H
05C = gl ﬂ—-o—l-z ds or '€ = 4mr2 '"T(p'—f (54)
IHinc ' l Hlnc |

Comparison of the biatatic cross-section between the "SDT" and classical

results are shown in Figure 14.

For more complex geometries it is convenient to expand Equation 8 in the
Cartesian coordinate system. Carrying out the indicated operation and resolving the
integral equation into sepac..te components we cbtain,

Z(B n ‘Hozmp)=
- F, (P) +,—1,-,L|'rn F, @+ T, F (@ +T,, F, (@] dsg
2 Lo-H np)=-F (@) +g |z, F, @ (55)
oz “P "~ “ox y | 3 gl ¥x X
+T Fy(Q)-l-T F (Q)!dsQ

yy yz 2

1 \
2 M m - Ho fp)=-F, (F)+q, fs [Tox F@+ T, F (@ + T, F, (@) dsg

where

Txx =R (P, Q) l(zp - zQ) np + (yp - yQ) mP]



Txy= -R(P,Q (xp- xQ) my,
T,,=-R (P,Q) (xP - xQ) np
1y. == R(P’Q) (yP' YQ) tp

Tyy =R (P,Q)'(xp - xQ) IP + (zP - zQ) npl
Tyz=-R (P,Q lyp - yQ) np
T,x="R(P,Q (zp-2g) Ip

sz= -R(P,Q (zp- zQ) my
Tea =R P,Q[ (xp - x) L5+ (vp - y0) mp|

and
+ik rp -,

|
R(PQ) = +k[rp =) ﬁ—-
|rp - Q

If the total surface is approximated by n subsurfaces and we let 4 SQ denote the

subsurface at point Q, the integral of Equation 56 can be replaced by a summation
preparatory to numerical integration.

) &
2 (Hoy np-Hy, mp)=-F, (P)+ ﬁqszl lTxx Fy @
(66)

+ T F Q4+ Ty, F, )] 884
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2(H, Lp-H np)=-F (F)+g; ‘g

+T, F (Q+T, F (Q]as (56)
Wy ye 2 Q continued

2(Home oy P)='F (P)"'Tlezx X" Q)

T,y Fy, @+ T, F (Q)]AS

It should be noted that the summation applies to all n surfaces except for P = Q
which is the singularity term represented by the single term outside the summation on
A
the right hand side. The left hand side represents the incident wave, Hine (P).

Each equation in 56 represents n equations, (P =1 ton) and the 3n
simultanewus linear equations yield solutions of Fx' Fy and Fz on each subsurface.

Equaticn 56 in matrix form is,

] e e

where

A
K|= incident fleld = 2" (P) x ﬁp

unknown eurrents

Kezxuel of the integral equation
¢ coeflicients of Fo I-‘y and l" in Equation 56)

T

[F]is readily o:taineg by multiplying Eqilition 57 through by the inverse of the
 oefficient matrix, [T] %,
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Because of the limited storage capacity of computers maximum accuracy is

—a ined by utilizing the symmetry properties of the scatterer. For the case of

ially symmetric bodies the number of subsurfaces can almost be quadrupled
—th the same computer storage. When such properties exist it is possible to combine
Il the coefficients of the symmetrical terms and thereby reduce the number of un-

cwns. Care should be iaken to determine the proper direction of the currents hence
— signs of the coefficients before combining. For the case of incident plane wave
—aveling along the z-axis and H polarized in the y direction, the polarities of current

mponents on an axially symmetric body are given in Table 1 with the first quadrant

reference and the other quadrants given in the conventional x-y plane of the right
==ncled Cartesian coordinates

Table 1 Current Poloritics on an Axia'ly Symmetrical! Body

Quadrant Fx Fy Fz
1 + + +
o sl - -
m + 4+ -
v i - +

For the case of plane symmetry the mimber of subsurfaces could be doubled
applying the above procedures. With quadrants I and IV as reference, and y-z
—= plane of symmetry, the polarities of the current components are given in Table 2.

Table 2 Current Polarities on Bodies with Plane of Symmetry

Quadrant Fx Fy l-‘z
I1&IV + + +
I&ld + | - -




As an c:xample a spheroid of 12 x 12 subsurfaces will be considered

é=0°§ =90
x / A
(Y
-4\ hio
6 13 s JI‘ 7 ;3 b l[’
A __ ng 2’)/0
;;go» -2 2437 1 3,513,91370
4 N Y
2945 J4s]47 25
s ‘55 %6 /57 |59 ‘" &)
X{8¢/s7 18345 é=90°
y
6 =90°
Sketch 1  Spheriod with 12 x 12 Subsurfaces

In Sketch 1 the total surface is divided into twelve sections in both 6 and ¢
directions and a set of indices (J, K) is assigned to each subsurface. The first number
denotes the order in the 6 direction and the second mimber, the ¢ direction. Table 3

lists the symmetrical subsurfaces whose coefficients are combined to reduce the
computer storage.

Table 3 Symmetrical Subsurfaces for Axially Symmetric Shapes

Quadrant Symmetrical Subsurfaces (K = 1 to 12)
I (1, K) 2, K) (3, K)
I (6, K) (5, K) 4, K
m (7, K) (8, K (9, K)
v (12, K) (11, K) (10, K)

Once the current on the surfacc of a scatterer is determined, the far-field
pattern can be obtained by applying Kirchoff's integral. Let Ex , ﬁ:y and E , denote
the three orthogonal components of the electric field at point R (9, ¢), we have

. —— -—w—-—-—u—n.“ >
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x & x 2
n \
A I xork York <o)
v yQ 2@ (59)
E, CQZI F Qe asq
n, jk x +k vy +k z
_ A Q™ y’Q
Ez—qu;l Fz( e ASQ

where (x_., yq, zQ) = coordinates of the current points
kx =k sin 6 cos ¢
ky =k sin 0 sin ¢

kz =k cos 6
C = normalization constant.

Transforming into spherical coordinates, we obtain

A A A A
Eo=Excosoco:¢+l:yeololtn¢-Ezslno

(60)

A A
=-Ex|in¢+E cos ¢

E
¢ y

\ A B
Eg end Eg as wellas E, E_ and ﬁ‘ are complex quantities and are expressed in

terms of real and imaginary components. When the magnitude and the phase are

desired it is only a matter of simple conversion, e.g.

(61)

am SNV e T e W WM 4 - e EWR - = = v T vt R EOPAWPUERET, . ¢ kWY @RS W WE S ey e
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where
A
E = ER +} EI

The scattering cross section at r is then given by

A 2
2 |[Eo|” + |Eq|°]

05¢ = qar 5 (62)
IElncl
2.2.4 Apnlicatio A =Di onal Geometri

To demonstrate the versatility of the "SDT" to geometries which are not
tractable by classical procedures, several basic shapes were examined. A prolate
spheroid with minor axis ka = 1. 7 and major axis kb = 3.4, was selec:ed for com-
parison with the aforementioned sphere. iIn Figure 15, propagation of the incident
magnetic field iz along the major axis and the bistatic cross section is observed
throughout the 360 degree scotor. Considerable reduction in the monostatic cross
section (in the 180 degree direction) was achieved. (Refer to Figure 14).

The truncated cone and cone-sphere geometries are of current interest since
they conform to basic re-entry vehicle configurations. The bistatic cross-section
of a truncated cone due to a plane wave incident on the tip is shown in Figure 16.
The large back lobe is due to the sharp discontinuity at the btase of the cone. By
capping the base witha hemisphere to elminate the discontinuity, it is possible to
suppress (by approximately 10db) the backlobe contribution as shown in Figure 17.

3.0 NORTHROP NORAIR'S "PHYSICAL OPTICS" PROCENURE

3.1 Geperal Formulation
As indicated above, solution of the general electromagnetic scattering and

diffraction problem via Northrop Norair's Source Distribution Technique (""8DT")
-27



is based upon the explicit determination of the current distribution induced on the
surface of the scatterer by the incident wave. The scattered fields anywhere in space
are in turn evalusted by integrating the current distribution over the entire surface.
The unique feature of the "SDT" is its extreme simplicity and flexibility to solve
arbitrary geometries. Since the scatterer is described in the Cartesian coordinate
system, it can be approximated by a finite number of elemental surfaces completely
independent of rotational or plane of symmetry. Another advantage to choosing this
coordinate system is in the simplicity in evaluation of the scattered fields from the
current distribution. Inasmuch as the three surface current components on each
elemental surface are expressed in the Cariesian coordinates, simple trigonometric
functions relate the currents to the scattered fields.

When the characteristic dimension of the scatterer lies inthe resonance region
(. 1\ to 2)\) the induced current distribution is obtained by numerical solution of an
integral equation. The integral equation is approximated by a finite difference tech-
nique which recasts the integral into a set ¢(ltnetr simultaneous equations and is
solved by matrix inversion techniques.

When the characteristic dimension of the soatterer is greater than2 A, a
fundamental limitation of the matrix inversion technique for solving the induced
current distribution iies in the storage capacity and speed of the digital computer and
therefore questions regarding the effectiveness of the techniques to handle these

rger complex geometxries naturally arise.

Indiscriminate use of storage tapes to accommodate larger and larger mairices
wauld be seriously questioned since the rapidly increasing computer costs would
deter the analytical procedures in favor of empirical techniques. Furthermore,
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since greater accuracies are also associated with larger matrices and hence higher
computer costs, cost-effectiveness must also be considered and properly weighed
with accuracy requirements compatible with the overall system.

To this end Northrop Norair has utilizod the well-established procedures of
physical optics to determine the current distribution on "large" perfectly conducting
scatterers. The surface of the scatterer is approximated by n elemental areas
(expressed in Carte_lan coordinates) and the surface current components are
evaluated from the tangential component of the incident magnetic field at each sub-

surface.

A A A
.Is—2nxﬂt

where 3. = current density, n = subsurface normal,

'Ht = tangentfal component of incident magnetic field ,

The scattered field is given by
Age 1 5T
" "ﬁZ.F’."TlA

where k = 3-;- =wave number, r distance from any subsurface to the noint

of observation and the summation is carried out over the entire illuminatec area.

As can be seen by the formulation above, a rigorous computation of RCS of
even the simplest shape is a formidable task, restricted to analytical surfuces. The
results for some of the tractable geometries are tabulated in Table 4 along with
limits of applicability and proper formulation for regions of the dependent variables
(wavelength, viewing angle, etc.). Generally the analysi must decompose the vehicle
by experience and good judgement to allow application of catalogued shapes and sum
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to approximate RCS. To overcome these restrictions, Northrop Norair utilized
numerical procedures developed in part by the previous ''SDT" program. The
surface of the scatterer is approximated by n elemental areas (expressed in Cartesian
coordinates) and the surface current components are explicitly evaluated and properly
stored inthe computer. The scattered fields and RCS are then determined from
Kirchoff's integral. This computer program is designated '"Physical-Optics" and is
applicable to surfaces whkose characteristic dimensgions are large (> 2X).

3.2 Numerijcal Regults

To test the range of applicability of this procedure, the classical problem of
scattering from a perfectly conducting sphere due to an incident magnetic field was
examined. Comparison of the backscattering cross-section with classical results as
a function of sphere circumference is shown in Figure 18. The agre=ment is quite
good for values of ka greater than 11. In all cases the illuminated portinn of the
sphere was approximated by 2, 520 subsurface elements. As a matter of interest,
Figure 19 coinparcs the bistatic cross-section for a sphere (ka = 10) with the classical
series expansion results.

The flextbility of this ""Physioal Optics" technique for the solution of more
comblex geometries is demonstrated by examining the monostatic scattering from a
lerge finite cylinder. The customary procedure to handle this geometry would be to
approximate it by simpler geometries for which solutions are known (i.e., the ends
by discs, cylindrical body by finite cylinder) and then sum the results in an appro-
priate manner to obtain the total cross-section of the original shape. These results
are included in Figures 20 and 21 together with measured data obtained from Northrop
Norair's radar reflectivity range. The discrepancies in vicinity of 45 degrees are
due to edge effects which are ignored in the "Physical Optics' analysis. Edges and
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surfaces discontinuities can be handled by including the ""SDT' procedure with '"Physical

Optics' as outlined next.

4.0 "SDT-PHYSICAL OPTICS" PROCEDURES

The "Physical Optics' approximation technique fails to describe properly the
currents on bodies in the transition region (upper end of resonant region and lower
end of physical optics region). Northrop Norair's SDT and '"Physical Optics"
techniques are suitably combined to determine explicitly the current distributions
over the entire surface and thcn sum them to obtain the scatter fields. The combina-
tion of the two programs is identified as "SDT-Physical Optics" ("'SDT-P/O").

In Figure 22, let ACB be the illuminated region and ADB, the shadow region.
The combination procedure simply applied the "Physical Optics'' techniques to a
portion o the illuminated area and then determines the current distribution in the
shadow region by applying the "SDT" program, considering the coupling effects from
the entire surface.

The improvement of the '"SDT-Physical Optics' program over the "Physical
Optics" technique for bodies in the transition region is clearly demonstrated in
Figure 23. It is clear that a more acourate description of the currents in the shadow
reglon has been achieved in the combination process resulting in more accurate
description of the scattered fields.

5.0 EXPERIMENTAL APPA US
An image-plane technique was utilized to measure the current distribution and

scattered fields. The general instrumentation followed along the lines of Kodis
and Wetzel (Reference 18) who successfully applied it to two-dimensional surfaces.
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A few modifications to their procedure was necessary to accommodate the three-

aimensional geometries described in this study.

An image-plane was constructed of 1/16 inch aluminum sheeting and electrically

bonded to form a continuous 16-foot x 24-foot ground plane. Flatness was held to

1/8 inch over the entire surface. Located in the center of the ground plane was a
circular opening 15 inches in diameter. The well beneath the cut-out housed the
measuring and positioning apparatus. An aluminum plate, together with the position-
ing device, was fitted into the hole flush with the surface and secured from below.

Hemi-surfaces of various shapes investigated were fabricated and fastened to the
aluminum plate (See Figure 24).

For the current distribution measurements, a magnetic probe mounted on a
copper band was carried over the surface for various elevation angles. This,
together with the option of rotating the circular plate inazimuth afforded the system

with two degrees of freedum. Amplitude and phase meausrements for both elevation
and azimuth positions were thus obtained.

Plane wave excitation was approximated by an H-plane flared horn fastened
at one end of the image-plane. Since the mode of propagation over the image-plaae

was TM, all measurements were conducted for only vertical polarization.

Calibration of the system was performed on conducting spheres for which
formal solutions are well-known and extensively tabulated. Results of these measure-
ments are shown in Figures 13 and 14. The primary source of error was from re-
flecting edges of the ground plane. To minimize the edge effects, absorbing material
was laid and secured along the entire periphery. (See Figure 25). Bistatic reflcctivity
measurements were also conducted on the image~plane utilizing an interferometer
technique. In operation the bridge is initially nulled without the test specimen, then
with it in place; the recorded difference is the measure of the scattering cross-section.
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The image plane is also equipped with a rotator and transmitter mount to
function as a ground plane reflectivity range as illustrated in Figure 26. A more
complete description of the measurement apparatus and test procedures will be

published in a forthcomirg report.

6.0 CONCLUSIONS

The results of this study indicate that a useful and versatile technique has been
developed for the solution of electromagnetic scattering from arbitraryshapes. It is
capable of solving two- and three-dimensional scattering problems for which classical
solutions are not availabl2. For those simple geometries for which exact soulutions
are available for comparison, excellent agreement was found in all cases. For the
cther shapes the '"SDT" solutions correlate well with the measured data.

Since the scatterer is des~ribed in the Cartesian coordinate system, it can be
approximated by a finite nmumber of elemental surfaces completely independent of
rtational or piane of symmetry. Ancther advantage of choosing this coordinate
system is the simplicity in the vval uation of the scattered fields from the current
distribution. As the three surface current components on each elemental surface
are expressed in the Cartesian coordinates, simple trigonometric functions relate
the currents to the scattered fields in their appropriate designations.

Although developed primary for the "'resonant" frequency range, the "SDT"
program has been suitably combined with large body approximation procecures,
*3DT-Physical Optics, "' handle larger geometries with greater ease and flexibility

then present-day approximation procedures.
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TABLE 1 RADAR CROSS SECTION (-~ ) OF SOME SIMPLE SHAPES
VIEWING
— ORIEN ATION
DI D WAVEL ot JAR CROSS SECTION

SHAPE POLARIZATION)* CONDITIONS)** P
Sphere Radias - o (ka 30 W.lz
Wavelength - A (ka - 1) A 68’:2
v. & (ka .08} ttna?
Doubly Curved Radit = a, and 2 Normal to Surface ra 4
1 2 172
Surface
Ellipsoid, Semi-Axes a,b,c. @ to a-Axis | nazbzcz
General ¢ to c-Axisy (4% sin® » cos® @ - b° ain® & gin° @ - Teonln?
42
Cllipsoid of Semi-Axes a = b,¢ ¥ to c-Axis nb ¢
: RIS U PRt ]
Revolution (mo +c” cos” 0}
Ogive of Diameter d Normal to Axis 5“2 . d!,
Revolution Length - { B
klai Circular Radius - a M Angle ¢ to 5 4r J.(u- 2
Plate drmasing Normal Cﬁ a [' msz.
w5 A "
(Jl : lst Order
Bessel Function)
Flat Piate Area - S Normally 2
Peaks 4t Small 0 Ams 2)
Excluding Peak at - an Az
Normal Incidence —=
(2re}
Plane or Edge Length : 7 Edge On 2
Thin Wedge (Polarization {
to Edge) ™
Cylinder Radiys = a At Angle ¢ from ral (nn .\') cos ¢
Length = { Normal to Axis s
Poak at Small ¢ .
n.zlesne Encluding Poak ot 22,
A 2ne
Elliptical Length = / Normal to Axts of 2.2,2
Cvlinder Semi-Axes = a.b Cylinder and &t } '," ! 3
Angle 010 a-Anls A(a cos“ @+ b nn o)
Infinite Cons Hall Angle = ¢ Axially 2. .4
(Concal Tip) ATtan" e 167
Height = h Axially Nooe-On ratran? o wn-rnte
Ihll(knl' -'o n
Bmall o 3
Cone Base Radius « 2 ' m‘“’;‘. '",‘ ) L&.b8 LX)
‘ , 82 sin” 0 coso 9A cos o
- #= {rom Axis 0 0.0 '%!'—:E‘n—%‘[lm’“'ﬂﬂ‘nz(’-al]
"X !-o -‘%%‘-:—"fmn’"oa)
L4 Ahtano 1
¢ meo
! wjeine] [-ln' #(-cos @ + t2na|sin .ll
1
llnl [} conl Q]
Frustum of Cone Halt Angle = ¢ Normal to 52 32 2
Smaller Radius = a Conic Surface S» ag " -a )
Larger Radiue = 49 9A sind o cos o
Carner Fach 90 Fdge < a At Maximum @ amal
Rellector ....‘,',
A

*When not specilied, polarization is not critical

**When not specified, wavelength - -

body dimensions
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TABLE 1 RADAR CROSS SECTION (¢) OF SOME SIMPLE SHAPES

(CONTINTIED)
VIEWING
URIENTATION RO .
PERTINENT LAND BODY RADAR CROKS SEC TION
DIMENSIONS (AND WAVELENCTH
SHAPE POLARIZATION)* COLIRTIONS) ** 4
2, .2 ) , 2 4
Paraboloid x° oy« <dpa At angle . from Axia 4 p° sec
Wire Euler's constant = ¥ = At anglc . to Axis fam L 2
1.7 2 2 sin =~ cos )
Radius of wire - a LS e - —
Length of wire - L == cos . 4
Polarization at angle ¢ 7= —5 cos' s
from parailel to axis » \ )
2 X Vaaein
at Rectangular Dinienston ax b At angle 8 from 2
Plate Angle measured Normal 4r Lab)” |sin (kasin® cos.')
from (oorainate a Ai Ka siné cos ¢

A2
sin (kb sin o san¢ co‘z 0
ki iné sin o

Truncated Ogive Oyive angle a at nose. At angle o from axis

Ogive angle o' at @' of ogive
Minor ratius of ogive a . Cad 2 2
Major rudius of ogive a V<% <v' & Aa'tan® (-0 Aa'tan® (0401
Ogive radius R 0 ¥'° 8% aing ”sing
- ————
. ” o) Aa'tan® (0+u)
.o __r_én_...
¢ <.<(i ’ msing
BE - z( . R-a )
: : LT

*When not specilied, polarization is not critical
**When not specified. wavelength <. body dimensions




